Reduction of eddy current loss in magnetoplated wire

Author:

Mizuno Tsutomu,Enoki Shigemi,Suzuki Takayuki,Asahina Takashi,Noda Masahiro,Shinagawa Hiroki

Abstract

PurposeThe purpose of this paper is to reduce eddy current loss in a wire that is affected by an alternating field passing through it. This allows the efficiency of transformers to be upgraded and the quality factor in coils to be increased.Design/methodology/approachThe use of a magnetoplated wire (MPW) is proposed to reduce eddy current loss in a wire. An MPW is a copper wire (COW) whose circumference is plated with a magnetic thin film. In additional, the theoretical equation for eddy current loss in an MPW is derived for ease of analysis.FindingsThe eddy current loss in an MPW is calculated as a function of the relative permeability and resistivity of its magnetic thin film to reduce the resistance due to the proximity effect of a coil. The eddy current loss in an MPW whose magnetic thin film has a relative permeability of 500 and a resistivity of 0.12 μΩm can be reduced to 4 percent that of COW at a frequency of 1 MHz.Originality/valueThe use of MPW can be expected to upgrade the efficiency of transformers and to increase the quality factor in coils.

Publisher

Emerald

Subject

Applied Mathematics,Electrical and Electronic Engineering,Computational Theory and Mathematics,Computer Science Applications

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effect of core and magnetoplated wire on energy harvesting using leakage flux recovery coil;International Journal of Applied Electromagnetics and Mechanics;2016-12-29

2. Leakage Flux Recovery Coil for Energy Harvesting Using Magnetoplated Wire;Journal of the Japan Society of Applied Electromagnetics and Mechanics;2015

3. Current-induced thermal stresses in a metal cylinder;Journal of Applied Physics;2009-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3