Abstract
Purpose
The purpose of this paper is to propose a numerical procedure for discrete identification of the missing part of the domain boundary in a heat conduction problem. A new approach to sensitivity analysis is intended to give a better understanding of the influence of measurement error on boundary reconstruction.
Design/methodology/approach
The solution of Laplace’s equation is obtained using the Trefftz method, and then each of the sought boundary points can be derived numerically from a nonlinear equation. The sensitivity analysis comes down to the analytical evaluation of a sensitivity factor.
Findings
The proposed method very accurately recovers the unknown boundary, including irregular shapes. Even a very large number of the boundary points can be determined without causing computational problems. The sensitivity factor provides quantitative assessment of the relationship between the temperature measurement errors and boundary identification errors. The numerical examples show that some boundary reconstruction problems are error-sensitive by nature but such problems can be recognized with the use of a sensitive factor.
Originality/value
The present approach based on the Trefftz method separates, in terms of computation, specification of the coefficients appearing in the Trefftz method and missing coordinates of the sought boundary points. Due to introducing a sensitivity factor, a more profound sensitivity analysis was successfully conducted.
Subject
Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献