Investigation of phase change dynamics in a T-shaped multiple vented cylindrical cavity during nanofluid convection for PCM-embedded system

Author:

Kolsi Lioua,Selimefendigil Fatih,Omri Mohamed

Abstract

Purpose The purpose of this study is to explore the phase change (PC) dynamics in a T-shaped ventilated cavity having multiple inlet and outlet ports during nanofluid convection with phase change material (PCM) packed bed-installed system. Design/Methodology/Approach Finite element method was used to analyze the PC dynamics and phase completion time for encapsulated PCM within a vented cavity during the convection of nanoparticle loaded fluid. The study is performed for different Reynolds number of flow streams (Re1 and Re2 between 300 and 900), temperature difference (ΔT1 and ΔT2 between −5 and 10), aspect ratio of the cavity (between 0.5 and 1.5) and nanoparticle loading (between 0.02% and 0.1%). Findings It is observed that phase transition can be controlled by assigning different velocities and temperatures at the inlet ports of the T-shaped cavity. The PC becomes fast especially when the Re number and temperature of fluid in the port vary closer to the wall (second port). When the configurations with the lowest and highest Re number of the second port are considered up to 54.7% in reduction of complete phase transition time is obtained, while this amount is 78% when considering the lowest and highest inlet temperatures. The geometric factor which is the aspect ratio has also affected the flow field and PC dynamics. Up to 78% reduction in the phase transition time is obtained at the highest aspect ratio. Further improvements in the performance are achieved by using nanoparticles in the base fluid. The amounts in the phase transition time reduction are 8% and 10.5% at aspect ratio of 0.5 and 1.5 at the highest nanoparticle concentration. Originality/Value The thermofluid system and offered control mechanism for PC dynamics control can be considered for the design, optimization, further modeling and performance improvements of applications with PCM installed systems.

Publisher

Emerald

Subject

Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference82 articles.

1. A three-dimensional computational analysis of ellipsoidal radiator with phase change;International Journal of Numerical Methods for Heat and Fluid Flow,2020

2. Caputo fractional convective flow in an inclined wavy vented cavity filled with a porous medium using Al2O3-Cu hybrid nanofluids;International Communications in Heat and Mass Transfer,2020

3. Investigation into thermal performance of nanosized phase change material (PCM) in microchannel flow;International Journal of Numerical Methods for Heat and Fluid Flow,2013

4. Numerical investigations of using carbon foam/PCM/Nano carbon tubes composites in thermal management of electronic equipment;Energy Conversion and Management,2015

5. An effectiveness-NTU model of a packed bed PCM thermal storage system;Applied Energy,2014

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3