Author:
Buck Axel,Mundt Christian
Abstract
Purpose
Reynolds-averaged Navier–Stokes (RANS) models often perform poorly in shock/turbulence interaction regions, resulting in excessive wall heat load and incorrect representation of the separation length in shockwave/turbulent boundary layer interactions. The authors suggest that this can be traced back to inadequate numerical treatment of the inviscid fluxes. The purpose of this study is an extension to the well-known Harten, Lax, van Leer, Einfeldt (HLLE) Riemann solver to overcome this issue.
Design/methodology/approach
It explicitly takes into account the broadening of waves due to the averaging procedure, which adds numerical dissipation and reduces excessive turbulence production across shocks. The scheme is derived based on the HLLE equations, and it is tested against three numerical experiments.
Findings
Sod’s shock tube case shows that the scheme succeeds in reducing turbulence amplification across shocks. A shock-free turbulent flat plate boundary layer indicates that smooth flow at moderate turbulence intensity is largely unaffected by the scheme. A shock/turbulent boundary layer interaction case with higher turbulence intensity shows that the added numerical dissipation can, however, impair the wall heat flux distribution.
Originality/value
The proposed scheme is motivated by implicit large eddy simulations that use numerical dissipation as subgrid-scale model. Introducing physical aspects of turbulence into the numerical treatment for RANS simulations is a novel approach.
Reference28 articles.
1. A subgrid-scale deconvolution approach for shock capturing;Journal of Computational Physics,2002
2. New insights into large eddy simulation;Fluid Dynamics Research,1992
3. Hypersonic shock wave impingement on turbulent boundary layers: computational analysis and uncertainty;Journal of Spacecraft and Rockets,2013
4. On RANS turbulence models for high-speed applications,2021
5. A Riemann solver for rans;Computational Mathematics and Mathematical Physics,2014