On the application of the GS4-1 framework for fluid dynamics and adaptive time-stepping via a universal A-posteriori error estimator

Author:

Wang Yazhou,Xie Ningning,Yin Likun,Zhang Tong,Zhang Xuelin,Mei Shengwei,Xue Xiaodai,Tamma Kumar

Abstract

Purpose The purpose of this paper is to describe a novel universal error estimator and the adaptive time-stepping process in the generalized single-step single-solve (GS4-1) computational framework, applied for the fluid dynamics with illustrations to incompressible Navier–Stokes equations. Design/methodology/approach The proposed error estimator is universal and versatile that it works for the entire subsets of the GS4-1 framework, encompassing the nondissipative Crank–Nicolson method, the most dissipative backward differential formula and anything in between. It is new and novel that the cumbersome design work of error estimation for specific time integration algorithms can be avoided. Regarding the numerical implementation, the local error estimation has a compact representation that it is determined by the time derivative variables at four successive time levels and only involves vector operations, which is simple for numerical implementation. Additionally, the adaptive time-stepping is further illustrated by the proposed error estimator and is used to solve the benchmark problems of lid-driven cavity and flow past a cylinder. Findings The proposed computational procedure is capable of eliminating the nonphysical oscillations in GS4-1(1,1)/Crank–Nicolson method; being CPU-efficient in both dissipative and nondissipative schemes with better solution accuracy; and detecting the complex physics and hence selecting a suitable time step according to the user-defined error threshold. Originality/value To the best of the authors’ knowledge, for the first time, this study applies the general purpose GS4-1 family of time integration algorithms for transient simulations of incompressible Navier–Stokes equations in fluid dynamics with constant and adaptive time steps via a novel and universal error estimator. The proposed computational framework is simple for numerical implementation and the time step selection based on the proposed error estimation is efficient, benefiting to the computational expense for transient simulations.

Publisher

Emerald

Subject

Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference33 articles.

1. Investigation of the Oldroyd model as a generalized incompressible Navier–Stokes equation via the interpolating stabilized element free Galerkin technique;Applied Numerical Mathematics,2020

2. Adaptive asynchronous time-stepping, stopping criteria, and a posteriori error estimates for fixed-stress iterative schemes for coupled poromechanics problems;Journal of Computational and Applied Mathematics,2020

3. Crank–Nicolson finite difference method for two-dimensional diffusion with an integral condition;Applied Mathematics and Computation,2001

4. The method of variably scaled radial kernels for solving two-dimensional magnetohydrodynamic (MHD) equations using two discretizations: the Crank–Nicolson scheme and the method of lines (MOL);Computers and Mathematics with Applications,2015

5. The boundary knot method for the solution of two-dimensional advection reaction-diffusion and brusselator equations;International Journal of Numerical Methods for Heat and Fluid Flow,2020

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3