Computational investigation of laminar premixed hydrogen flame past a quenching mesh

Author:

Benim Ali Cemal,Pfeiffelmann Björn

Abstract

Purpose The purpose of this study is the computational analysis of atmospheric, laminar, stoichiometric and premixed hydrogen-air flames in the presence of a quenching mesh. The assessment of the predictive capability of different reaction mechanisms, the clarification of the relative importance of the thermal and chemical effects for mesh quenching and the investigation of the influence of the mesh geometry on the quenching effectiveness are the focal points of the investigation. Design/methodology/approach The problem is posed as unsteady, two-dimensional. Differential governing equations are numerically solved by the finite volume method for the reacting hydrogen/air mixture, assuming an ideal gas behaviour. Thermal radiation and buoyancy are neglected. A coupled solver is used to treat the velocity-pressure coupling, along with a stiff-chemistry solver for the chemical kinetics. Second-order discretization schemes are used in space and time. A uniform grid resolution is used, where the grid independence in terms of the flame speed prediction is ensured in preliminary calculations for one-dimensional flames. Findings It is found that a detailed reaction mechanism is necessary for an accurate prediction. Meshes with round openings are found to be more effective that those with slit openings (SOs), by a factor of two in the maximum safe gap size. A perforated plate is observed to have a higher quenching potential compared to a wire mesh, for SOs. It is also found that the heat loss to the wall is the dominating quenching mechanism for the present problem, whereas adsorption of radicals plays a subordinate role. Originality/value In contrast to the previous studies in the field, a detailed reaction mechanism is applied instead of a single-step one, while still using the latter for comparison. The role of wall-radicals interaction for the quenching effectiveness of the mesh is addressed for the first time. Parametric studies are performed on the mesh geometry, which was not done before. Hydrogen is considered as fuel in contrast to the great majority of the previous work.

Publisher

Emerald

Subject

Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference39 articles.

1. ANSYS Fluent 18.0, Theory Guide (2018), available at: www.ansys.com (accessed 31 August 2018).

2. Barnett, H. C. and Hibbard, R. R. (Eds), (1959), “Basic considerations in the combustion of hydrocarbon fuels with air”, NACA Report 1300.

3. Bellos, E., Danill, I. and Tzivanidis, C. (2018), “A cylindrical insert for parabolic through solar collector”, International Journal of Numerical Heat Transfer for Heat and Fluid Flow, available at: https://doi.org/10.1108/HFF-05-2018-0190

4. A finite element solution of radiative heat transfer in participating media utilizing the moment method;Computer Methods in Applied Mechanics and Engineering,1988

5. Investigation into the computational analysis of direct-transfer pre-swirl systems for gas turbine cooling,2004

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3