A high-dimensional classification approach based on class-dependent feature subspace

Author:

Chen Fuzan,Wu Harris,Dou Runliang,Li Minqiang

Abstract

Purpose The purpose of this paper is to build a compact and accurate classifier for high-dimensional classification. Design/methodology/approach A classification approach based on class-dependent feature subspace (CFS) is proposed. CFS is a class-dependent integration of a support vector machine (SVM) classifier and associated discriminative features. For each class, our genetic algorithm (GA)-based approach evolves the best subset of discriminative features and SVM classifier simultaneously. To guarantee convergence and efficiency, the authors customize the GA in terms of encoding strategy, fitness evaluation, and genetic operators. Findings Experimental studies demonstrated that the proposed CFS-based approach is superior to other state-of-the-art classification algorithms on UCI data sets in terms of both concise interpretation and predictive power for high-dimensional data. Research limitations/implications UCI data sets rather than real industrial data are used to evaluate the proposed approach. In addition, only single-label classification is addressed in the study. Practical implications The proposed method not only constructs an accurate classification model but also obtains a compact combination of discriminative features. It is helpful for business makers to get a concise understanding of the high-dimensional data. Originality/value The authors propose a compact and effective classification approach for high-dimensional data. Instead of the same feature subset for all the classes, the proposed CFS-based approach obtains the optimal subset of discriminative feature and SVM classifier for each class. The proposed approach enhances both interpretability and predictive power for high-dimensional data.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Strategy and Management,Computer Science Applications,Industrial relations,Management Information Systems

Reference37 articles.

1. A two-stage gene selection scheme utilizing MRMR filter and GA wrapper;Knowledge and Information Systems,2011

2. Asuncion, A. and Newman, D.J. (2007), “UCI machine learning repository”, Department of Information and Computer Science, University of California, Irvine, CA, available at: www.ics.uci.edu/~mlearn/MLRepository.html

3. hGA: hybrid genetic algorithm in fuzzy rule-based classification systems for high-dimensional problems;Applied Soft Computing,2012

4. Principal association mining: an efficient classification approach;Knowledge-Based Systems,2014

5. Big data analytics with swarm intelligence;Industrial Management & Data Systems,2016

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3