Author:
Mozumder Sharif,Dempsey Michael,Kabir M. Humayun
Abstract
Purpose
The purpose of the paper is to back-test value-at-risk (VaR) models for conditional distributions belonging to a Generalized Hyperbolic (GH) family of Lévy processes – Variance Gamma, Normal Inverse Gaussian, Hyperbolic distribution and GH – and compare their risk-management features with a traditional unconditional extreme value (EV) approach using data from future contracts return data of S&P500, FTSE100, DAX, HangSeng and Nikkei 225 indices.
Design/methodology/approach
The authors apply tail-based and Lévy-based calibration to estimate the parameters of the models as part of the initial data analysis. While the authors utilize the peaks-over-threshold approach for generalized Pareto distribution, the conditional maximum likelihood method is followed in case of Lévy models. As the Lévy models do not have closed form expressions for VaR, the authors follow a bootstrap method to determine the VaR and the confidence intervals. Finally, for back-testing, they use both static calibration (on the entire data) and dynamic calibration (on a four-year rolling window) to test the unconditional, independence and conditional coverage hypotheses implemented with 95 and 99 per cent VaRs.
Findings
Both EV and Lévy models provide the authors with a conservative proportion of violation for VaR forecasts. A model targeting tail or fitting the entire distribution has little effect on either VaR calculation or a VaR model’s back-testing performance.
Originality/value
To the best of the authors’ knowledge, this is the first study to explore the back-testing performance of Lévy-based VaR models. The authors conduct various calibration and bootstrap techniques to test the unconditional, independence and conditional coverage hypotheses for the VaRs.
Reference76 articles.
1. Asymptotic theory of certain goodness of fit criteria based on stochastic processes;The Annals of Mathematical Statistics,1952
2. A test of goodness of fit;Journal of the American Statistical Association,1954
3. Anna, C., Rachev, S. and Fabozzi, F. (2005), “Composite goodness-of-fit tests for left-truncated loss samples”, Working Paper, Department of Statistics and Applied Probability, University of California, Santa Barbara.
4. An extreme value approach to estimating volatility and value at risk;Journal of Business,2003
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献