A novel method for merging academic social network ontologies using formal concept analysis and hybrid semantic similarity measure

Author:

Priya M.ORCID,Ch. Aswani Kumar

Abstract

Purpose The purpose of this paper is to merge the ontologies that remove the redundancy and improve the storage efficiency. The count of ontologies developed in the past few eras is noticeably very high. With the availability of these ontologies, the needed information can be smoothly attained, but the presence of comparably varied ontologies nurtures the dispute of rework and merging of data. The assessment of the existing ontologies exposes the existence of the superfluous information; hence, ontology merging is the only solution. The existing ontology merging methods focus only on highly relevant classes and instances, whereas somewhat relevant classes and instances have been simply dropped. Those somewhat relevant classes and instances may also be useful or relevant to the given domain. In this paper, we propose a new method called hybrid semantic similarity measure (HSSM)-based ontology merging using formal concept analysis (FCA) and semantic similarity measure. Design/methodology/approach The HSSM categorizes the relevancy into three classes, namely highly relevant, moderate relevant and least relevant classes and instances. To achieve high efficiency in merging, HSSM performs both FCA part and the semantic similarity part. Findings The experimental results proved that the HSSM produced better results compared with existing algorithms in terms of similarity distance and time. An inconsistency check can also be done for the dissimilar classes and instances within an ontology. The output ontology will have set of highly relevant and moderate classes and instances as well as few least relevant classes and instances that will eventually lead to exhaustive ontology for the particular domain. Practical implications In this paper, a HSSM method is proposed and used to merge the academic social network ontologies; this is observed to be an extremely powerful methodology compared with other former studies. This HSSM approach can be applied for various domain ontologies and it may deliver a novel vision to the researchers. Originality/value The HSSM is not applied for merging the ontologies in any former studies up to the knowledge of authors.

Publisher

Emerald

Subject

Library and Information Sciences,Information Systems

Reference40 articles.

1. Structure based modular ontologies composition,2016

2. A tool for creating and visualising formal concept trees,2016

3. Chatterjee, N., Kaushik, N., Gupta, D. and Bhatia, R. (2017), “Ontology merging: a practical perspective”, in Satapathy, Chandra, S. and Joshi, A. (Eds), International Conference on Information and Communication Technology for Intelligent Systems, Springer, Cham, pp. 136-145.

4. Merging domain ontologies based on the WordNet system and Fuzzy formal concept analysis techniques;Applied Soft Computing,2011

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3