A deep neural network based context-aware smart epidemic surveillance in smart cities

Author:

Gill Harsuminder KaurORCID,Sehgal Vivek Kumar,Verma Anil Kumar

Abstract

PurposeEpidemics not only affect the public health but also are a threat to a nation's growth and economy as well. Early prediction of epidemic can be beneficial to take preventive measures and to reduce the impact of epidemic in an area.Design/methodology/approachA deep neural network (DNN) based context aware smart epidemic system has been proposed to prevent and monitor epidemic spread in a geographical area. Various neural networks (NNs) have been used: LSTM, RNN, BPNN to detect the level of disease, direction of spread of disease in a geographical area and marking the high-risk areas. Multiple DNNs collect and process various data points and these DNNs are decided based on type of data points. Output of one DNN is used by another DNN to reach to final prediction.FindingsThe experimental evaluation of the proposed framework achieved the accuracy of 87% for the synthetic dataset generated for Zika epidemic in Brazil in 2016.Originality/valueThe proposed framework is designed in a way that every data point is carefully processed and contributes to the final decision. These multiple DNNs will act as a single DNN for the end user.

Publisher

Emerald

Subject

Library and Information Sciences,Information Systems

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3