An integrated interpretive structural modeling and a graph-theoretic approach for measuring the supply chain complexity in the Indian automotive industry

Author:

E.G. Kavilal,Prasanna Venkatesan Shanmugam,Sanket Joshi

Abstract

Purpose Easily employable quantitative supply chain complexity (SCC) measures considering the significant dimensions of complexity as well as the drivers that represent those dimensions are limited in the literature. The purpose of this paper is to propose an integrated interpretive structural modeling (ISM) and a graph-theoretic approach to quantify SCC by a single numerical index considering the interdependence and the inheritance of the SCC drivers. Design/methodology/approach In total, 18 SCC drivers identified from the literature are clustered according to the significant dimensions of complexity. The interdependencies established through ISM and inheritance values of SCC drivers are mapped into a Variable Permanent Matrix (VPM). The permanent function of this VPM is then computed and the resulting single numerical index is the measure of SCC. Findings A scale is proposed by computing the minimum and maximum threshold values of SCC with the help of expert opinions of the Indian automotive industry. The complexity of commercial and passenger vehicle sectors within the automotive industry is measured and compared using the proposed scale. From the results, it is identified that the number of suppliers, increase in spare-parts due to shortened product life-cycle and demand uncertainties increase the SCC of the passenger vehicle sector, while number of parts, products and processes, variety of products and process and unreliability of suppliers increase the complexity of the commercial vehicle sector. The result indicates that various SCC drivers have a different impact on determining the SCC level of these two sectors. Originality/value The authors propose an integrated method that can be readily applied to measure and quantify SCC considering the significant dimensions of complexity as well as the interdependence and the inheritance of the SCC drivers that contribute to those dimensions. This index further helps to compare the complexity of the supply chain which varies between industries.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Strategy and Management,Computer Science Applications,Control and Systems Engineering,Software

Reference100 articles.

1. Managing complexity in supply chains: a discussion of current approaches on the example of the semiconductor industry;Procedia CIRP,2013

2. To eliminate or absorb supply chain complexity: a conceptual model and case study;Supply Chain Management: An International Journal,2016

3. performance measurement in supply chains: new network analysis and entropic indexes;International Journal of Production Research,2010

4. An entropy-based approach to simultaneous analysis of supply chain structural complexity and adaptation potential;International Journal of Shipping and Transport Logistics,2011

5. A measure of agility as the complexity of the enterprise system;Robotics and Computer Integrated Manufacturing,2004

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3