Selective disassembly sequence optimization based on the improved immune algorithm

Author:

Ji Jiaqi,Wang Yong

Abstract

Purpose The purpose of this paper is to improve the automation of selective disassembly sequence planning (SDSP) and generate the optimal or near-optimal disassembly sequences. Design/methodology/approach The disassembly constraints is automatically extracted from the computer-aided design (CAD) model of products and represented as disassembly constraint matrices for DSP. A new disassembly planning model is built for computing the optimal disassembly sequences. The immune algorithm (IA) is improved for finding the optimal or near-optimal disassembly sequences. Findings The workload for recognizing disassembly constraints is avoided for DSP. The disassembly constraints are useful for generating feasible and optimal solutions. The improved IA has the better performance than the genetic algorithm, IA and particle swarm optimization for DSP. Research limitations/implications All parts must have rigid bodies, flexible and soft parts are not considered. After the global coordinate system is given, every part is disassembled along one of the six disassembly directions –X, +X, –Y, +Y, –Z and +Z. All connections between the parts can be removed, and all parts can be disassembled. Originality/value The disassembly constraints are extracted from CAD model of products, which improves the automation of DSP. The disassembly model is useful for reducing the computation of generating the feasible and optimal disassembly sequences. The improved IA converges to the optimal disassembly sequence quickly.

Publisher

Emerald

Reference33 articles.

1. Depth of manual dismantling analysis: a cost-benefit approach;Waste Management,2013

2. Assembly planning using a novel immune approach;The International Journal of Advanced Manufacturing Technology,2007

3. Asynchronous parallel selective disassembly sequence considering multi-targets;Computer Integrated Manufacturing Systems,2020

4. Disassembly sequence optimization for large-scale products with multiresource constraints using scatter search and petri nets;IEEE Transactions on Cybernetics,2016

5. A novel immune evolutionary algorithm incorporating chaos optimization;Pattern Recognition Letters,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3