Nonlinear dynamics of flow in piping trees using projection methods

Author:

Mayes Jason,Voikov Vladimir,Sen Mihir

Abstract

PurposeSimple methods for the steady‐state analysis of a flow network are readily available, but the dynamic behavior of a large‐scale flow network is difficult to study due to the complex differential‐algebraic equation system resulting from its modeling. It is the aim of this paper to present two simple methods for the dynamic analysis of large‐scale flow networks and to demonstrate their use by examining the dynamics of a self‐similar branching tree network.Design/methodology/approachTwo numerical projection methods are proposed for one‐dimensional dynamic analysis of large piping networks. Both are extensions of that suggested by Chorin for the nonlinear differential‐algebraic system resulting from the Navier‐Stokes equations. Each numerical algorithm is discussed and verified for turbulent flow in a nonlinear, self‐similar, branching tree network with constant friction factor for which an exact solution is available.FindingsThe dynamics of this network are calculated for more realistic friction factors and described as system parameters are varied. Self‐excited oscillations due to laminar‐turbulent transition are found for some parameter values and dynamic component behavior is observed in the network which is not observable in components apart from it.Practical implicationsIt is shown that the dynamics of a flow network can exhibit unexpected behavior, reinforcing the need for simple methods to perform dynamic analysis.Originality/valueThis paper presents two numerical projection schemes for dynamic analysis of large‐scale flow networks to aid in their study and design.

Publisher

Emerald

Subject

Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3