Synthesis, characterization, spectroscopic properties and computational studies of some new azo dyes derived from 5-chloro-8-hydroxy quinoline

Author:

Ashouri Mirsadeghi Fatemeh,Moradi Rufchahi Enayatollah,Zarrabi Saeid

Abstract

Purpose The purpose of this study, 3-aminopyridine, 8-aminoquinoline and some new synthesized 2-aminobenzothiazoles were diazotized with nitrosyl sulfuric acid and subsequently coupled with 5-chloro-8-hydroxy quinoline to synthesize the corresponding heteroarylazo dyes 6–13. Design/methodology/approach The structures of dyes were characterized by mass, Fourier transform infra red, 1H proton nuclear magnetic resonance and ultra violet-visible spectroscopic techniques. Absorption spectra of the dyes were measured in acetic acid, ethanol, chloroform, acetonitrile, dimethyl formamide and dimethyl sulfoxide and correlated with the nature of the solvents and substituents. The effects of varying pH on the absorption wavelengths of the azo dyes were also studied. In addition, the acidity constants (pKa) of the dyes were determined using the spectrophotometric method in an ethanol-water mixture (80:20, v/v) at 20–23°C. Besides, density functional theory (DFT) calculations were carried out to compare the energies of proposed azo and hydrazone tautomers of the dyes. Findings The results showed that the withdrawing chloro groups on the diazo moiety have significant influence (red shift) on the electron absorption spectra of these dyes. In addition, introducing electron withdrawing chloro groups into the benzothiazoles moiety increased the acidic character of dyes. Originality/value The synthesized 7-hetroarylazo-5-chloro-8-hydroxy quinoline dyes are new members in the 8-hydroxyquinoline azo dyes family, where very few details regarding the synthesis of such dyes are reported before in the literature. They are unique in terms of synthesis, spectral properties and DFT calculations.

Publisher

Emerald

Subject

Materials Chemistry,Surfaces, Coatings and Films

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3