A new neutrosophic TF-IDF term weighting for text mining tasks: text classification use case

Author:

Bounabi Mariem,Elmoutaouakil Karim,Satori Khalid

Abstract

Purpose This paper aims to present a new term weighting approach for text classification as a text mining task. The original method, neutrosophic term frequency – inverse term frequency (NTF-IDF), is an extended version of the popular fuzzy TF-IDF (FTF-IDF) and uses the neutrosophic reasoning to analyze and generate weights for terms in natural languages. The paper also propose a comparative study between the popular FTF-IDF and NTF-IDF and their impacts on different machine learning (ML) classifiers for document categorization goals. Design/methodology/approach After preprocessing textual data, the original Neutrosophic TF-IDF applies the neutrosophic inference system (NIS) to produce weights for terms representing a document. Using the local frequency TF, global frequency IDF and text N's length as NIS inputs, this study generate two neutrosophic weights for a given term. The first measure provides information on the relevance degree for a word, and the second one represents their ambiguity degree. Next, the Zhang combination function is applied to combine neutrosophic weights outputs and present the final term weight, inserted in the document's representative vector. To analyze the NTF-IDF impact on the classification phase, this study uses a set of ML algorithms. Findings Practicing the neutrosophic logic (NL) characteristics, the authors have been able to study the ambiguity of the terms and their degree of relevance to represent a document. NL's choice has proven its effectiveness in defining significant text vectorization weights, especially for text classification tasks. The experimentation part demonstrates that the new method positively impacts the categorization. Moreover, the adopted system's recognition rate is higher than 91%, an accuracy score not attained using the FTF-IDF. Also, using benchmarked data sets, in different text mining fields, and many ML classifiers, i.e. SVM and Feed-Forward Network, and applying the proposed term scores NTF-IDF improves the accuracy by 10%. Originality/value The novelty of this paper lies in two aspects. First, a new term weighting method, which uses the term frequencies as components to define the relevance and the ambiguity of term; second, the application of NL to infer weights is considered as an original model in this paper, which also aims to correct the shortcomings of the FTF-IDF which uses fuzzy logic and its drawbacks. The introduced technique was combined with different ML models to improve the accuracy and relevance of the obtained feature vectors to fed the classification mechanism.

Publisher

Emerald

Subject

Computer Networks and Communications,Information Systems

Reference41 articles.

1. A comparison of supervised classification methods for a statistical set of features: application: amazigh OCR,2015

2. An information-theoretic perspective of tf–idf measures;Information Processing and Management,2003

3. An improved clustering method for text documents using neutrosophic logic,2017

4. Neutrosophic classifier: an extension of fuzzy classifer;Applied Soft Computing,2013

5. A comparison of text classification methods method of weighted terms selected by different stemming techniques,2017

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Personalized new media marketing recommendation system based on TF-IDF algorithm optimizing LSTM-TC model;Service Oriented Computing and Applications;2024-08-06

2. Chinese and English text classification techniques incorporating CHI feature selection for ELT cloud classroom;Open Computer Science;2024-01-01

3. Classifying Evaluation Method of Innovative Teachers’ Teaching Ability Based on Multi Source Data Fusion;Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering;2024

4. Data Mining Technology Helps Digital Teaching and Learning of English Majors in Colleges and Universities;Applied Mathematics and Nonlinear Sciences;2023-12-05

5. K-Means and Feature Selection Mechanism to Improve Performance of Clustering User Stories in Agile Development;2023 International Conference on Modeling & E-Information Research, Artificial Learning and Digital Applications (ICMERALDA);2023-11-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3