Removal and tribological behaviors of waxy deposition layer in cleaning process

Author:

Guo Yanbao,Liu Shuhai,Tan Guibin,Yang Liu,Wang Deguo

Abstract

Purpose The wax deposition in oil wells and pipelines is very viciously negative to the petroleum extraction and crude oil transportation, and it even causes severe blockage accident. This study aims to describe cleaning experiments performed on wax deposition of different deposition layer and experimental conditions to investigate the removal and tribological properties and chip formation. Design/methodology/approach An optical arrangement was used to visually record the cleaning process, whereas the friction forces were measured by a custom-built tribometer. Various measurements were performed with tool rake angles of 45° and −30° and cleaning depths from 1 to 5 mm. Findings Results from experiments and modeling suggest that the transition of chip was dependent on rake angle, wax performance and cleaning depth. While the cleaning depth increased, the friction and cleaning resistant force also increased. With the increase of cleaning depth, the wax layer cleaning quantity increased and the chip strengthened; hence, the curvature radius of chip was enhanced to form platy chip. The chip of wax–oil mixture was discontinuous units, and it was easy to adhere on the rake face with the increasing depth of cut. With an increase in cleaning depth, the friction and cleaning-resistant force also increased. Originality/value It is concluded that for effectively cleaning and stabilizing of pipeline cleaning machine, different cleaning parameters should be applied to accommodate wax layer or wax–oil mixture.

Publisher

Emerald

Subject

Surfaces, Coatings and Films,General Energy,Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3