“Alternative” materials in the green building and construction sector

Author:

Krueger Kate,Stoker Adam,Gaustad Gabrielle

Abstract

Purpose The construction, use and demolition of buildings carry enormous environmental burdens. As one step to reduce a building’s environmental impact, green building design guidelines and certification programs, such as Leadership in Energy and Environmental Design, Cradle to Cradle and the Whole Building Design Guide, promote the specification of alternative, non-traditional building materials. Alternative materials carry a variety of potential benefits: reducing the amount of energy and other resources needed to create building materials; creating healthier indoor and outdoor environments; diverting or reducing waste from landfills; reducing the use of scarce, critical or economically volatile materials; and spurring innovation in the building industry. However, a lack of clarity surrounds alternative materials and creates a barrier to their usage. The purpose of this paper is to review definitions of alternative materials in various design guidelines in order to provide context to their specification and usage. Design/methodology/approach Through a survey of green building programs and guidelines, existing literature on alternative materials, and life-cycle assessment using multiple inventory databases, this study tackles the following questions: what constitutes an alternative building material; what are the current barriers to their specification; how are they specified in the most common design guidelines; and do alternative building materials present a “greener” alternative? Findings These results show that while often alternative materials do in fact show promise for reducing environmental impacts of the built environment, by how much can be a challenging question to quantify and depends on a variety of factors. While many green building guides and certification systems provide recommendations for use of alternative materials, the sheer diversity and uncertainty of these systems coupled with the complexity in understanding their impacts still present a significant barrier to their specification. Much work remains in a variety of disciplines to tackle these barriers. A clear emphasis should be on better understanding their environmental impacts, particularly with respect to the context within the built environment that their specification will provide energy, resource and emission savings. Other key areas of significant work include reducing costs, removing regulatory and code barriers, and educating designers, consumers, and end-users. Originality/value Alternative materials are defined and specified in a diversity of contexts leaving the design and construction communities hesitant to promote their use; other work has found this to be a key barrier to their widespread usage. By compiling definitions, barriers and design guidelines instructions while also exploring analytically the benefits of specific cases, this work provides a foundation for better understanding where new, more sustainable materials can be successfully specified.

Publisher

Emerald

Subject

Management, Monitoring, Policy and Law,Urban Studies,Building and Construction,Renewable Energy, Sustainability and the Environment,Civil and Structural Engineering,Human Factors and Ergonomics

Reference87 articles.

1. Amatruda, J. (2012), “Evaluating and selecting green products”, available at: www.wbdg.org/resources/greenproducts.php?r=ieq (accessed June 29, 2014).

2. New internet portal for federal construction information;Anonymous;Forest Products Journal,2001

3. A review of unconventional sustainable building insulation materials;Sustainable Materials and Technologies,2015

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3