IoT-based framework for performance measurement

Author:

Rezaei Mahdi,Akbarpour Shirazi Mohsen,Karimi Behrooz

Abstract

Purpose The purpose of this paper is to develop an Internet of Things (IoT)-based framework for supply chain (SC) performance measurement and real-time decision alignment. The aims of the proposed model are to optimize the performance indicator based on integrated supply chain operations reference metrics. Design/methodology/approach The SC multi-dimensional structure is modeled by multi-objective optimization methods. The operational presented model considers important SC features thoroughly such as multi-echelons, several suppliers, several manufacturers and several products during multiple periods. A multi-objective mathematical programming model is then developed to yield the operational decisions with Pareto efficient performance values and solved using a well-known meta-heuristic algorithm, i.e., non-dominated sorting genetic algorithm II. Afterward, Technique for Order of Preference by Similarity to Ideal Solution method is used to determine the best operational solution based on the strategic decision maker’s idea. Findings This paper proposes a dynamic integrated solution for three main problems: strategic decisions in high level, operational decisions in low level and alignment of these two decision levels. Originality/value The authors propose a human intelligence-based process for high level decision and machine intelligence-based decision support systems for low level decision using a novel approach. High level and low level decisions are aligned by a machine intelligence model as well. The presented framework is based on change detection, event driven planning and real-time decision alignment.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Strategy and Management,Computer Science Applications,Industrial relations,Management Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3