An outcome-based process optimization model using fuzzy-based association rules

Author:

Lau Henry,Lee C.K.M.,Nakandala Dilupa,Shum Paul

Abstract

Purpose The purpose of this paper is to propose an outcome-based process optimization model which can be deployed in companies to enhance their business operations, strengthening their competitiveness in the current industrial environment. To validate the approach, a case example has been included to assess the practicality and validity of this approach to be applied in actual environment. Design/methodology/approach This model embraces two approaches including: fuzzy logic for mimicking the human thinking and decision making mechanism; and data mining association rules approach for optimizing the analyzed knowledge for future decision-making as well as providing a mechanism to apply the obtained knowledge to support the improvement of different types of processes. Findings The new methodology of the proposed algorithm has been evaluated in a case study and the algorithm shows its potential to determine the primary factors that have a great effect upon the final result of the entire operation comprising a number of processes. In this case example, relevant process parameters have been identified as the important factors causing significant impact on the result of final outcome. Research limitations/implications The proposed methodology requires the dependence on human knowledge and personal experience to determine the various fuzzy regions of the processes. This can be fairly subjective and even biased. As such, it is advisable that the development of artificial intelligence techniques to support automatic machine learning to derive the fuzzy sets should be promoted to provide more reliable results. Originality/value Recent study on the relevant topics indicates that an intelligent process optimization approach, which is able to interact seamlessly with the knowledge-based system and extract useful information for process improvement, is still seen as an area that requires more study and investigation. In this research, the process optimization system with an effective process mining algorithm embedded for supporting knowledge discovery is proposed for use to achieve better quality control.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Strategy and Management,Computer Science Applications,Industrial relations,Management Information Systems

Reference25 articles.

1. Fast algorithms for mining association rules,1994

2. Mining association rules between sets ofitems in large databases,1993

3. The role of forecasting on bullwhip effect for E-SCM applications;International Journal of Production Economics,2008

4. Data mining and the impact of missing data;Industrial Management & Data Systems,2003

5. Optimization of fuzzy production inventory model with unrepairable defective products;International Journal of Production Economics,2008

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Factors influencing tourists’ nightlife experience in Belgrade;Consumer Behavior in Tourism and Hospitality;2022-09-01

2. Firm capability assessment via the BSC and DEA;Industrial Management & Data Systems;2021-01-22

3. Exploring differences in competitive performance based on Miles and Snow's strategy typology for the semiconductor industry;Industrial Management & Data Systems;2020-04-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3