Multi-period investment decision problem based on time consistent generalized convex risk measure and extremum scenarios

Author:

Yang Li,Chen Zhiping,Hu Qianhui

Abstract

Purpose – To help investors find an investment policy with strong competitiveness, the purpose of this paper is to construct a multi-period investment decision model with practicality and superior performance. Design/methodology/approach – The paper uses a suitable multi-period risk measure to construct a multi-period portfolio selection model, where target returns at intermediate periods and market frictions are taken into account simultaneously. An efficient scenario tree generation approach is proposed in order to transform the complex multi-period portfolio selection problem into a tractable one. Findings – Numerical results show the new scenario tree generation algorithms are stable and can further reduce the tree size. With the scenario tree generated by the new scenario tree generation approach, the optimal investment strategy obtained under the multi-period investment decision model has more superior performance and robustness than the corresponding optimal investment strategy obtained under the single period investment model or the multi-period investment model only paying attention to the terminal cash flow. Research limitations/implications – The new risk measure and multi-period investment decision models can stimulate readers to find even better models and to efficiently solve realistic multi-period portfolio selection problems. Practical implications – The empirical results show the superior performance and robustness of optimal investment strategy obtained with the new models. What's more important, the empirical analyses tell readers how different market frictions affect the performance of optimal portfolios, which can guide them to efficiently solve real multi-period investment decision problems in practice. Originality/value – The paper first derives the concrete structure of the time consistent generalized convex multi-period risk measure, then constructs a multi-period portfolio selection model based on the new multi-period risk measure, and proposes a new extremum scenario tree generation algorithm. The authors construct a realistic multi-period investment decision model. Furthermore, using the proposed scenario tree generation algorithm, the authors transform the established stochastic investment decision model into a deterministic optimization problem, which can provide optimal investment decisions with robustness and superior performance.

Publisher

Emerald

Subject

Finance

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3