Abstract
Purpose
– In the finance literature, fitting a cross-sectional regression with (estimated) abnormal returns as the dependent variable and firm-specific variables (e.g. financial ratios) as independent variables has become de rigueur for a publishable event study. In the absence of skewness and/or kurtosis the explanatory variable, the regression design does not exhibit leverage – an issue that has been addressed in the econometrics literature on the finite sample properties of heteroskedastic-consistent (HC) standard errors, but not in the finance literature on event studies. The paper aims to discuss this issue.
Design/methodology/approach
– In this paper, simulations are designed to evaluate the potential bias in the standard error of the regression coefficient when the regression design includes “points of high leverage” (Chesher and Jewitt, 1987) and heteroskedasticity. The empirical distributions of test statistics are tabulated from ordinary least squares, weighted least squares, and HC standard errors.
Findings
– None of the test statistics examined in these simulations are uniformly robust with regard to conditional heteroskedasticity when the regression includes “points of high leverage.” In some cases the bias can be quite large: an empirical rejection rate as high as 25 percent for a 5 percent nominal significance level. Further, the bias in OLS HC standard errors may be attenuated but not fully corrected with a “wild bootstrap.”
Research limitations/implications
– If the researcher suspects an event-induced increase in return variances, tests for conditional heteroskedasticity should be conducted and the regressor matrix should be evaluated for observations that exhibit a high degree of leverage.
Originality/value
– This paper is a modest step toward filling a gap on the finite sample properties of HC standard errors in the event methodology literature.
Subject
Finance,Business, Management and Accounting (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Social media posts and stock returns: The Trump factor;International Journal of Managerial Finance;2020-06-04