Deep reinforcement learning-based attitude motion control for humanoid robots with stability constraints

Author:

Shi Qun,Ying Wangda,Lv Lei,Xie Jiajun

Abstract

Purpose This paper aims to present an intelligent motion attitude control algorithm, which is used to solve the poor precision problems of motion-manipulation control and the problems of motion balance of humanoid robots. Aiming at the problems of a few physical training samples and low efficiency, this paper proposes an offline pre-training of the attitude controller using the identification model as a priori knowledge of online training in the real physical environment. Design/methodology/approach The deep reinforcement learning (DRL) of continuous motion and continuous state space is applied to motion attitude control of humanoid robots and the robot motion intelligent attitude controller is constructed. Combined with the stability analysis of the training process and control process, the stability constraints of the training process and control process are established and the correctness of the constraints is demonstrated in the experiment. Findings Comparing with the proportion integration differentiation (PID) controller, PID + MPC controller and MPC + DOB controller in the humanoid robots environment transition walking experiment, the standard deviation of the tracking error of robots’ upper body pitch attitude trajectory under the control of the intelligent attitude controller is reduced by 60.37 per cent, 44.17 per cent and 26.58 per cent. Originality/value Using an intelligent motion attitude control algorithm to deal with the strong coupling nonlinear problem in biped robots walking can simplify the control process. The offline pre-training of the attitude controller using the identification model as a priori knowledge of online training in the real physical environment makes up the problems of a few physical training samples and low efficiency. The result of using the theory described in this paper shows the performance of the motion-manipulation control precision and motion balance of humanoid robots and provides some inspiration for the application of using DRL in biped robots walking attitude control.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Control and Systems Engineering

Reference37 articles.

1. A comparison of four methods for non-linear data modeling;Chemometrics and Intelligent Laboratory Systems,1994

2. Study of PID control algorithm and intelligent PID controller,2017

3. Longitudinal model identification and velocity control of an autonomous car;IEEE Transactions on Intelligent Transportation Systems,2014

4. A theoretically grounded application of dropout in recurrent neural networks;Advances in Neural Information Processing Systems,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3