Non‐equilibrium viscous shock‐layer technique for computing hypersonic flow around blunt‐nosed slender bodies

Author:

Ghasemloo S.,Mani M.

Abstract

PurposeThe purpose of this paper is to present a non‐equilibrium viscous shock layer (VSL) solution procedure that considerably improves computational efficiency, especially for long slender bodies.Design/methodology/approachThe VSL equations are solved in a shock oriented coordinate system. The method of solution is spatial marching, implicit, finite‐difference technique, which includes coupling of the normal momentum and continuity equations. In the nose region, the shock shape is specified from an algebraic expression and corrected through global passes through that region. The shock shape is computed as part of the solution beyond the nose region and requires only a single global pass. For this study, a seven‐species (O2, N2, O, N, NO, NO+, e) air model is used.FindingsThe present approach eliminates the need for initial shock shape, which was required by previous method of solution. This method generates its own shock shape as a part of solution and the input shock shape obtained from a different solution is not required. Therefore, in comparison with the other VSL methods, the present approach dramatically reduces the CPU time of calculations. Moreover, by using the shock oriented coordinate systems the junction point problem in sphere‐cone configurations is solved.Practical implicationsThis method is an excellent tool for parametric study and preliminary design of hypersonic vehicles.Originality/valueThe present method provides a computational capability which reduces the CPU time, and expands the range of application for the prediction of hypersonic heating rates.

Publisher

Emerald

Subject

Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Numerical simulation of a hypersonic flow past a blunt body;International Journal of Numerical Methods for Heat & Fluid Flow;2017-06-05

2. Viscous Shock Layer Around Slender Bodies with Nonequilibrium Air Chemistry;Iranian Journal of Science and Technology, Transactions of Mechanical Engineering;2016-11-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3