Linear tetrahedral finite elements for thermal shock problems

Author:

Fachinotti Víctor D.,Bellet Michel

Abstract

PurposeThe paper seeks to present an original method for the numerical treatment of thermal shocks in non‐linear heat transfer finite element analysis.Design/methodology/approachThe 3D finite element thermal analysis using linear standard tetrahedral elements may be affected by spurious local extrema in the regions affected by thermal shocks, in such a severe ways to directly discourage the use of these elements. This is especially true in the case of solidification problems, in which melted alloys at very high temperature contact low diffusive mould materials. The present work proposes a slight modification to the discrete heat equation in order to obtain a system matrix in M‐matrix form, which ensures an oscillation‐free solution.FindingsThe proposed “diffusion‐split” method consists basically of using a modified conductivity matrix. It allows for solutions based on linear tetrahedral elements. The performance of the method is evaluated by means of a test case with analytical solution, as well as an industrial application, for which a well‐behaved numerical solution is available.Originality/valueThe proposed method should be helpful for computational engineers and software developers in the field of heat transfer analysis. It can be implemented in most existing finite element codes with minimal effort.

Publisher

Emerald

Subject

Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference17 articles.

1. Batkam, S. (2002), “Thermique multidomaine en simulation numérique du remplissage 3D”, PhD thesis, École des Mines de Paris.

2. Bonacina, C., Comini, G., Fasano, A. and Primicerio, M. (1973), “Numerical solution of phase‐change problems”, International Journal of Heat and Mass Transfer, Vol. 16, pp. 1825‐32.

3. Cordes, C. and Putti, M. (2001), “Accuracy of Galerkin finite elements for groundwater flow simulations in two and three‐dimensional triangulations”, International Journal for Numerical Methods in Engineering, Vol. 52, pp. 371‐87.

4. Gerrekens, P. (1988), “Modélisation par éléments finis des phénomènes d'ablation thermique avec pyrolyse”, PhD thesis, Faculté des Sciences Appliquées, Université de Liège, Belgium.

5. Hogge, M. and Gerrekens, P. (1982), “Steep gradient modeling in diffusion problems”, in Lewis, R.W. et al. (Eds), Numerical Methods in Heat Transfer,Vol. II, Wiley, Chichester, pp. 73‐97.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3