A hybrid finite difference‐finite element method for solving the 3D energy equation in non‐isothermal flow past over a tube

Author:

Arefmanesh A.,Alavi M.A.

Abstract

PurposeThis paper aims to develop a hybrid finite difference‐finite element method and apply it to solve the three‐dimensional energy equation in non‐isothermal fluid flow past over a tube.Design/methodology/approachTo implement the hybrid scheme, the tube length is partitioned into uniform segments by choosing grid points along its length, and a plane perpendicular to the tube axis is drawn at each of the points. Subsequently, the Taylor‐Galerkin finite element technique is employed to discretize the energy equation in the planes; while the derivatives along the tube are discretized using the finite difference method.FindingsTo demonstrate the validity of the proposed numerical scheme, three‐dimensional test cases have been solved using the method. The variation of L2‐norm of the error with mesh refinement shows that the numerical solution converges to the exact solution with mesh refinement. Moreover, comparison of the computational time duration shows that the proposed method is approximately three times faster than the 3D finite element method. In the non‐isothermal fluid flow around a tube for Re=250 and Pr=0.7, the results show that the Nusselt number decreases with the increase in the tube length and, for the tube length greater than six times the tube diameter, the average Nusselt number converges to the value for the two‐dimensional case.Originality/valueA hybrid finite difference‐finite element method has been developed and applied to solve the 3D transient energy equation for different test cases. The proposed method is faster, and computationally more efficient, compared with the 3D finite element method.

Publisher

Emerald

Subject

Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3