Three‐dimensional numerical simulation of g‐jitter induced convection and solute transport in magnetic fields

Author:

Li K.,Li B.Q.,Handa J.,de Groh H.C.

Abstract

PurposeThe quality of crystals grown in space can be diversely affected by the melt flows induced by g‐jitter associated with a space vehicle. This paper presents a full three‐dimensional (3D) transient finite element analysis of the complex fluid flow and heat and mass transfer phenomena in a simplified Bridgman crystal growth configuration under the influence of g‐jitter perturbations and magnetic fields.Design/methodology/approachThe model development is based on the Galerkin finite element solution of the magnetohydrodynamic governing equations describing the thermal convection and heat and mass transfer in the melt. A physics‐based re‐numbering algorithm is used to make the formidable 3D simulations computationally feasible. Simulations are made using steady microgravity, synthetic and real g‐jitter data taken during a space flight.FindingsNumerical results show that g‐jitter drives a complex, 3D, time dependent thermal convection and that velocity spikes in response to real g‐jitter disturbances in space flights, resulting in irregular solute concentration distributions. An applied magnetic field provides an effective means to suppress the deleterious convection effects caused by g‐jitter. Based on the simulations with applied magnetic fields of various strengths and orientations, the magnetic field aligned with the thermal gradient provides an optimal damping effect, and the stronger magnetic field is more effective in suppressing the g‐jitter induced convection. While the convective flows and solute transport are complex and truly 3D, those in the symmetry plane parallel to the direction of g‐jitter are essentially two‐dimensional (2D), which may be approximated well by the widely used 2D models.Originality/valueThe physics‐based re‐numbering algorithm has made possible the large scale finite element computations for 3D g‐jitter flows in a magnetic field. The results indicate that an applied magnetic field can be effective in suppressing the g‐jitter driven flows and thus enhance the quality of crystals grown in space.

Publisher

Emerald

Subject

Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effect of unsteady natural convection mass transfer caused by g-jitter on protein crystal growth under microgravity;Numerical Heat Transfer, Part A: Applications;2016-09-20

2. Heat transfer—A review of 2005 literature;International Journal of Heat and Mass Transfer;2010-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3