Numerical analysis of heat transfer enhancement in a double pipe heat exchanger with porous fins

Author:

Kahalerras H.,Targui N.

Abstract

PurposeThe aim is to study numerically the heat transfer enhancement in a double pipe heat exchanger by using porous fins attached at the external wall of the inner cylinder.Design/methodology/approachThe Brinkman‐Forchheimer extended Darcy model is used in the porous regions. The differential equations subjected to the boundary conditions are solved numerically using the finite volume method. Numerical calculations are performed for a wide range of Darcy number (10−6Da≤10−1), porous fins height (0≤Hp≤1) and spacing (0≤Lf≤39) and thermal conductivity ratio (1≤Rk≤100). The effects of these parameters are considered in order to look for the most appropriate properties of the porous fins that allow optimal heat transfer enhancement.FindingsThe results obtained show that the insertion of porous fins may alter substantially the flow pattern depending on their permeability, height and spacing. Concerning the heat transfer effect, it is found that the use of porous fins may enhance the heat transfer in comparison to the fluid case and that the rate of improvement depends on their geometrical and thermo‐physical properties. Performance analysis indicated that more net energy gain may be achieved as the thermal conductivity ratio increases especially at high Darcy numbers and heights.Research limitations/implicationsThe results obtained in this work are valid for double pipe heat exchangers with the same fluid flowing at the same flow rate in the two ducts and for the case of an inner cylinder of negligible thermal resistance.Practical implicationsThe results obtained in this study can be used in the design of heat exchangers.Originality/valueThis study provides an interesting method to improve heat transfer in a double pipe heat exchanger by use of porous fins.

Publisher

Emerald

Subject

Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3