Modelling and analysis of slip conditions in hydrodynamic lubrication of a piston skirt-cylinder contact

Author:

Mechalikh Mustapha,Zidane Ibrahim,Benhamou Abdessoufi,Zaidi Hamid,Tahar Abbes Miloud

Abstract

Purpose After more than a century of agreement with the postulate of non-slip condition (adhesion to the wall), the study of fluid-solid boundary conditions has shown renewed interest over the past two decades. Although numerous studies have not yet been arrived to a complete description of slip phenomena, however, it appears that the influence of wetting and/or surface roughness results in a weak interaction between fluid and solid; thus, the presence of the slip phenomenon is observed at the fluid-solid interface. The purpose of this paper is to highlight the presence of the slip phenomenon at the lubricated piston skirt-cylinder contact. Design/methodology/approach For this proposal, a modified Reynolds equation and operating characteristics are determined by taking into account the slip conditions at the interface between oil-film and entire cylinder surface. Findings The findings indicate that the operating characteristics are strongly influenced when the slip conditions are taken into account at the interface between oil-film and cylinder surface. The friction force and dissipated power might be reduced to improve diesel engine performances. Originality/value Various research studies have been conducted to model the slip phenomenon in different lubricated contacts over the past two decades. However, there are no studies available concerning the piston-cylinder system. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-11-2019-0483/

Publisher

Emerald

Subject

Surfaces, Coatings and Films,General Energy,Mechanical Engineering

Reference19 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3