Abstract
Purpose
The purpose of this paper is to acquire sealing properties of supercritical CO2 (S-CO2) T-groove seal under ultra-high-speed conditions by thermo-elastohydrodynamic lubrication (TEHL) analysis.
Design/methodology/approach
Considering the choked flow effect, the finite difference method is applied to solve the gas state equation, Reynolds equation and energy equation. The temperature, pressure and viscosity distributions of the lubricating film are analyzed, and sealing characteristics is also obtained.
Findings
The face distortions induced by increasing rotational speed leads to the convergent face seal gap. When the linear velocity of rotation exceeds 400 m/s, the maximum temperature difference of the sealing film is approximately 140 K, and the viscosity of CO2 is altered by 17.80%. Near the critical temperature point of CO2, while the seal temperature increases by 50 K, the opening force of the T-groove non-contact seal enhances by 20% and the leakage rate declines by 80%.
Originality/value
The TEHL characteristics of the T-groove non-contact seal are numerically analyzed under ultra-high-speed, considering the real gas effect and choked flow effect. In the supercritical conditions, the influence of rotational speed, seal temperature, seal pressure and film thickness on sealing performance and face distortions is analyzed.
Subject
Surfaces, Coatings and Films,General Energy,Mechanical Engineering
Reference24 articles.
1. Low-Leakage Shaft-End seals for Utility-Scale supercritical CO2 turboexpanders;Journal of Engineering for Gas Turbines and Power,2017
2. The parameters influencing high-pressure mechanical gas face seal behavior in static operation;Tribology Transactions,2009
3. Development of the turbomachinery for the supercritical CO2 power cycle;International Journal of Energy Research,2016
4. Investigation of a radial turbine design for a Utility-Scale supercritical CO2 power cycle;Appl Sci-Basel,2020
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献