Effect of argon plasma surface modification on tribological behavior of biopolymers

Author:

Sagbas Binnur

Abstract

Purpose The aim of this study is to determine the effect of argon plasma surface modification on tribological properties of conventional ultra-high molecular weight polyethylene (UHMWPE) and vitamin E-blended UHMWPE. In previous studies, some researchers conducted a study on argon plasma surface modification of UHMWPE, but there is no study about argon plasma surface modification of VE-UHMWPE. So another objective of this paper is to compare the results for both the material groups. Design/methodology/approach UHMWPE and vitamin E-blended UHMWPE sample surfaces were modified by microwave-induced argon plasma to increase tribological properties of the materials. The modified surfaces were evaluated in terms of wettability and wear behavior. Wettability of the surfaces was determined by contact angle measurements. Wear behavior was examined by ball-on-disc wear tests under lubrication with 25 per cent bovine serum. Findings Argon plasma surface modification enhanced the wear resistance and surface wettability properties of conventional UHMWPE and VE-UHMWPE. Wear factor of argon plasma-treated samples reduced, but for VE-UHMWPE samples, this reduction was not as high as the conventional UHMWPE’s wear factor. Originality/value In previous studies, some researchers have studied on argon plasma surface modification of UHMWPE, but there is no study about argon plasma surface modification of VE-UHMWPE.

Publisher

Emerald

Subject

Surfaces, Coatings and Films,General Energy,Mechanical Engineering

Reference24 articles.

1. Tribological studies of highly crosslinked and vitamin-E Blended UHMWPE,2010

2. Implant wear mechanisms – basic approach;Biomedical Materials,2008

3. Vitamin E-stabilized UHMWPE for total joint implants;Clinical Orthopaedics and Related Research,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3