Comparison of three-dimensional flow mixing via pulsation and dynamical stirring: application to the mixing of parallel streams at different temperatures

Author:

Sastre Francisco,Martin Elena B.,Velazquez Angel,Baïri Abderrahmane

Abstract

Purpose This paper aims to compare the performance of flow pulsation versus flow stirring in the context of mixing of a passive scalar at moderate Reynolds numbers in confined flows. This comparison has been undertaken in two limits: diffusion can be neglected as compared to convection (very large Peclet) and diffusion and convection effects are comparable. The comparison was performed both in terms of global parameters: pumping power and mixing efficiency and local flow topology. Design/methodology/approach The study has been addressed by setting up a common conceptual three-dimensional problem that consisted of the mixing of two parallel streams in a square section channel past a square section prism. Stirring and pulsation frequencies and amplitudes were changed and combined at an inlet Reynolds number of 200. The numerical model was solved using a finite volume formulation by adapting a series of open-source OpenFOAM computational fluid dynamic (CFD) libraries. For cases with flow pulsation, the icoFoam solver for laminar incompressible transient flows was used. For cases with stirring, the icoDyMFoam solver, which uses the arbitrary Lagrangian–Eulerian method for the description of the moving dynamical mesh, was used to model the prism motion. At the local flow topology level, a new method was proposed to analyze mixing. Time evolution of folding and wrinkling of sheets made up of virtual particles that travel along streak lines was quantified by generating lower rank projections of the sheets onto the spaces spanned by the main eigenvectors of an appropriate space-temporal data decomposition. Findings In the limit when convection is dominant, the results showed the superior performance of stirring versus flow pulsation both in terms of mixing and required pumping power. In the cases with finite Peclet, the mixing parameters by stirring and flow pulsation were comparable, but pulsation required larger pumping power than stirring. For some precise synchronization of stirring and pulsation, the mixing parameter reached its maximum, although at the expense of higher pumping power. At the local flow topology level, the new method proposed to quantify mixing has been found to correlate well with the global mixing parameter. Originality/value A new systematic comparative study of two methods, stirring and pulsation, to achieve mixing of passive scalars in the mini scale for confined flows has been presented. The main value, apart from the conclusions, is that both methods have been tested against the same flow configuration, which allows for a self-consistent comparison. Of particular interest is the fact that it has been found that accurate synchronization of both methods yields mixing parameters higher than those associated to both methods taken separately. This suggests that it is possible to synchronize mixing methods of a different nature to achieve optimum designs. The new theoretical method that has been proposed to understand the mixing performance at the local level has shown promising results, and it is the intention of the authors to test its validity in a broader range of flow parameters. All these findings could be taken as potential guidelines for the design of mixing processes in the mini scale in the process industry.

Publisher

Emerald

Subject

Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dynamical analysis of a rotating rigid body containing a viscous incompressible fluid;International Journal of Numerical Methods for Heat & Fluid Flow;2023-05-19

2. 3D active mixing of confined power law aqueous polymer solutions: a comparative numerical study;International Journal of Numerical Methods for Heat & Fluid Flow;2022-11-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3