Analysis of mixed convection in water boundary layer flows over a moving vertical plate with variable viscosity and Prandtl number

Author:

Singh Abhishek Kumar,Singh A.K.,Roy S.

Abstract

Purpose The purpose of the present study is to analyze the mixed convection water boundary layer flows over moving vertical plate with variable viscosity and Prandtl number. The non-linear partial differential equation governing the flow and thermal fields are presented in non-dimensional form by using appropriate transformation. The quasi-linearization technique in combination with implicit finite difference scheme has been adopted to solve the nonlinear-coupled partial differential equation. The numerical results are displayed graphically to illustrate the influence of various non-dimensional physical parameters on velocity and temperature. Further, the numerical results for local skin-friction coefficient and local Nusselt number are also reported. The present findings are compared with previously reported results, and these comparisons are found to be in excellent agreement. Design/methodology/approach The nonlinear partial differential equations governing the flow and thermal fields have been solved numerically using the implicit finite difference scheme in combination with the quasi-linearization technique. The numerical results are presented in terms of skin friction and heat transfer rate which are useful in determining the surface heat requirements for stabilizing the laminar boundary layer flow over a moving plate in water. Findings The effect of the ratio of free-stream velocity to the composite reference velocity is significant on the velocity profile. Near the wall region, as ratio of free stream velocity to composite reference velocity increases form 0.1 to 0.5, the velocity overshoot gets enhanced from 3 per cent to 41 per cent. The influence of buoyancy parameter and ration of free stream velocity to composite reference velocity on temperature profile is comparatively less than on velocity profiles. The increase in the skin friction coefficient is dependent on the increase in the value of ratio of free stream velocity to composite reference velocity if the buoyancy parameter λ is fixed and vice versa and increases in ΔT results in a decrease in N and Pr. Originality/value The present investigation is to deal with the solution of steady laminar water boundary layer flows over a moving plate with temperature-dependent viscosity and Prandtl number applicable for water using practical data. The fluid considered here is water, as it is one of the most common working fluids found in engineering applications.

Publisher

Emerald

Subject

Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference28 articles.

1. On thermal boundary layer on a power-law stretching surface;Warme-Und Stoffubertragung,1995

2. Mixed convection boundary layer flow over a moving vertical flat plate in an external fluid flow with viscous dissipation effect;PloS One,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3