Author:
Bevan Rhodri LT,Boileau Etienne,van Loon Raoul,Lewis R.W.,Nithiarasu P
Abstract
Purpose
– The purpose of this paper is to describe and analyse a class of finite element fractional step methods for solving the incompressible Navier-Stokes equations. The objective is not to reproduce the extensive contributions on the subject, but to report on long-term experience with and provide a unified overview of a particular approach: the characteristic-based split method. Three procedures, the semi-implicit, quasi-implicit and fully explicit, are studied and compared.
Design/methodology/approach
– This work provides a thorough assessment of the accuracy and efficiency of these schemes, both for a first and second order pressure split.
Findings
– In transient problems, the quasi-implicit form significantly outperforms the fully explicit approach. The second order (pressure) fractional step method displays significant convergence and accuracy benefits when the quasi-implicit projection method is employed. The fully explicit method, utilising artificial compressibility and a pseudo time stepping procedure, requires no second order fractional split to achieve second order or higher accuracy. While the fully explicit form is efficient for steady state problems, due to its ability to handle local time stepping, the quasi-implicit is the best choice for transient flow calculations with time independent boundary conditions. The semi-implicit form, with its stability restrictions, is the least favoured of all the three forms for incompressible flow calculations.
Originality/value
– A comprehensive comparison between three versions of the CBS method is provided for the first time.
Subject
Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献