Approximate solutions of multi-order fractional advection-dispersion equation with non-polynomial conditions

Author:

Liu Yanqin,Dong Lihua

Abstract

Purpose – The purpose of this paper is to apply a new modified homotopy perturbation method, which is effective to solve multi-order fractional equations with non-polynomial initial and boundary conditions. Design/methodology/approach – The proposed algorithm is tested on multi-order fractional advection-dispersion equations. The fractional derivatives described in this paper are in the Caputo sense. Findings – Approximate results explicitly reveal the complete reliability, efficiency and accuracy of the new modified technique. Originality/value – It is observed that the approach may be implemented to other multi-fractional models with non-polynomial initial and boundary conditions.

Publisher

Emerald

Subject

Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Transient and passage to steady state in fluid flow and heat transfer within fractional models;International Journal of Numerical Methods for Heat & Fluid Flow;2022-09-13

2. High-order approximation for generalized fractional derivative and its application;International Journal of Numerical Methods for Heat & Fluid Flow;2019-09-02

3. An implicit Keller Box numerical scheme for the solution of fractional subdiffusion equations;Applied Mathematics and Computation;2019-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3