Author:
Yang Weichao,Liu Yikang,Deng E.,Wang Youwu,He Xuhui,Lei Mingfeng,Zou Yunfeng
Abstract
Purpose
The purpose of this paper is to understand the natural wind field characteristics of the tunnel entrance section and analyzing the aerodynamic performance of high-speed railway trains (HSRTs) under natural winds.
Design/methodology/approach
Three typical tunnel entrance section sites, namely, tunnel–bridge in a dry canyon (TBDC), tunnel–bridge in a river canyon (TBRC) and tunnel–flat ground (TF), are selected to conduct a continuous wind field measurement. Based on the measured wind characteristics, the natural winds of the TBDC and TF sites are reconstituted and imported into the two corresponding full-scale computational fluid dynamics models. The aerodynamic loads of the HSRT running on TBDC and TF with reconstituted winds are simply analyzed.
Findings
The von Kármán spectrum can be used to describe the wind field at the tunnel entrance section. In the reconstituted natural wind condition, a time-varying feature of wind speed distribution and leeward side vortex around the HSRT caused by the wind speed fluctuation is found. The fluctuating amplitude of aerodynamic loads at the TBDC infrastructure is up to 97.9% larger than that at the TF infrastructure.
Originality/value
The natural wind characteristics at tunnel entrance sections on the high-speed railway are first measured and analyzed. A numerical reconstitution scheme considering the temporal and spatial variation of natural wind speed is proposed and verified based on field measurement results. The aerodynamic performance of an HSRT under reconstituted natural winds is first investigated.
Subject
Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献