Digital technologies and corporate green innovation: opening the “black box” of resource orchestration mechanisms

Author:

Zhou Qian,Wang Shuxiang,Ma Xiaohong,Xu Wei

Abstract

Purpose Driven by the dual-carbon target and the widespread digital transformation, leveraging digital technology (DT) to facilitate sustainable, green and high-quality development in heavy-polluting industries has emerged as a pivotal and timely research focus. However, existing studies diverge in their perspectives on whether DT’s impact on green innovation is synergistic or leads to a crowding-out effect. In pursuit of optimizing the synergy between DT and green innovation, this paper aims to investigate the mechanisms that can be harnessed to render DT a more constructive force in advancing green innovation. Design/methodology/approach Drawing from the theoretical framework of resource orchestration, the authors offer a comprehensive elucidation of how DT intricately influences the green innovation efficiency of enterprises. Given the intricate interplay within the synergistic relationship between DT and green innovation, the authors use the fuzzy-set qualitative comparative analysis method to explore diverse configurations of antecedent conditions leading to optimal solutions. This approach transcends conventional linear thinking to provide a more nuanced understanding of the complex dynamics involved. Findings The findings reveal that antecedent configurations fostering high green innovation efficiency actually differ across various stages. First, there are three distinct configuration patterns that can enhance the green technology research and development (R&D) efficiency of enterprises, namely, digitally driven resource integration (RI), digitally driven resource synergy (RSy) and high resource orchestration capability. Then, the authors also identify three configuration patterns that can bolster the high green achievement transfer efficiency of enterprises, including a digitally optimized resource portfolio, digitally driven RSy and efficient RI. The findings not only contribute to advancing the resource orchestration theory in the digital ecosystem but also provide empirical evidence and practical insights to support the sustainable development of green innovation. Practical implications The findings can offer valuable insights for enterprise managers, providing decision-making guidance on effectively harnessing the innovation-driven value of internal and external resources through resource restructuring, bundling and leveraging, whether with or without the support of DT. Social implications The research findings contribute to heavy-polluting enterprises addressing the paradoxical tensions between digital transformation and resource constraints under environmental regulatory pressures. It aims to facilitate the simultaneous achievement of environmental and commercial success by enhancing their green innovation capabilities, ultimately leading to sustainability across profit and the environment. Originality/value Compared with previous literature, this research introduces a distinctive theoretical perspective, the resource orchestration view, to shed light on the paradoxical relationship on resource-occupancy between DT application and green innovation. It unveils the “black box” of how digitalization impacts green innovation efficiency from a more dynamic resource-based perspective. While most studies regard green innovation activities as a whole, this study delves into the impact of digitalization on green innovation within the distinct realms of green technology R&D and green achievement transfer, taking into account a two-stage value chain perspective. Finally, in contrast to previous literature that predominantly analyzes influence mechanisms through linear impact, the authors use configuration analysis to intricately unravel the complex influences arising from various combinatorial relationships of digitalization and resource orchestration behaviors on green innovation efficiency.

Publisher

Emerald

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3