Comparing tagging suggestion models on discrete corpora

Author:

Bozic Bojan,Rios Andre,Delany Sarah Jane

Abstract

Purpose This paper aims to investigate the methods for the prediction of tags on a textual corpus that describes diverse data sets based on short messages; as an example, the authors demonstrate the usage of methods based on hotel staff inputs in a ticketing system as well as the publicly available StackOverflow corpus. The aim is to improve the tagging process and find the most suitable method for suggesting tags for a new text entry. Design/methodology/approach The paper consists of two parts: exploration of existing sample data, which includes statistical analysis and visualisation of the data to provide an overview, and evaluation of tag prediction approaches. The authors have included different approaches from different research fields to cover a broad spectrum of possible solutions. As a result, the authors have tested a machine learning model for multi-label classification (using gradient boosting), a statistical approach (using frequency heuristics) and three similarity-based classification approaches (nearest centroid, k-nearest neighbours (k-NN) and naive Bayes). The experiment that compares the approaches uses recall to measure the quality of results. Finally, the authors provide a recommendation of the modelling approach that produces the best accuracy in terms of tag prediction on the sample data. Findings The authors have calculated the performance of each method against the test data set by measuring recall. The authors show recall for each method with different features (except for frequency heuristics, which does not provide the option to add additional features) for the dmbook pro and StackOverflow data sets. k-NN clearly provides the best recall. As k-NN turned out to provide the best results, the authors have performed further experiments with values of k from 1–10. This helped us to observe the impact of the number of neighbours used on the performance and to identify the best value for k. Originality/value The value and originality of the paper are given by extensive experiments with several methods from different domains. The authors have used probabilistic methods, such as naive Bayes, statistical methods, such as frequency heuristics, and similarity approaches, such as k-NN. Furthermore, the authors have produced results on an industrial-scale data set that has been provided by a company and used directly in their project, as well as a community-based data set with a large amount of data and dimensionality. The study results can be used to select a model based on diverse corpora for a specific use case, taking into account advantages and disadvantages when applying the model to your data.

Publisher

Emerald

Subject

Computer Networks and Communications,Information Systems

Reference31 articles.

1. Semantic tagging using topic models exploiting Wikipedia category network,2016

2. Begelman, G. Keller, P. (2006), and F. and Smadja, “Automated tag clustering: improving search and exploration in the tag space”, Proceedings of the Collaborative Web Tagging Workshop at the WWW. Edinburgh, available at: http://.pui.ch/phred/automated_tag_clustering/

3. A survey on tag recommendation methods;Journal of the Association for Information Science and Technology,2017

4. Robust accurate statistical annotation of general text,2002

5. Recommender systems for online and mobile social networks: a survey,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Book Recommendation System of University Library Based on Data Mining;Cyber Security Intelligence and Analytics;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3