A review of in-memory computing for machine learning: architectures, options

Author:

Snasel Vaclav,Dang Tran Khanh,Kueng Josef,Kong Lingping

Abstract

Purpose This paper aims to review in-memory computing (IMC) for machine learning (ML) applications from history, architectures and options aspects. In this review, the authors investigate different architectural aspects and collect and provide our comparative evaluations. Design/methodology/approach Collecting over 40 IMC papers related to hardware design and optimization techniques of recent years, then classify them into three optimization option categories: optimization through graphic processing unit (GPU), optimization through reduced precision and optimization through hardware accelerator. Then, the authors brief those techniques in aspects such as what kind of data set it applied, how it is designed and what is the contribution of this design. Findings ML algorithms are potent tools accommodated on IMC architecture. Although general-purpose hardware (central processing units and GPUs) can supply explicit solutions, their energy efficiencies have limitations because of their excessive flexibility support. On the other hand, hardware accelerators (field programmable gate arrays and application-specific integrated circuits) win on the energy efficiency aspect, but individual accelerator often adapts exclusively to ax single ML approach (family). From a long hardware evolution perspective, hardware/software collaboration heterogeneity design from hybrid platforms is an option for the researcher. Originality/value IMC’s optimization enables high-speed processing, increases performance and analyzes massive volumes of data in real-time. This work reviews IMC and its evolution. Then, the authors categorize three optimization paths for the IMC architecture to improve performance metrics.

Publisher

Emerald

Subject

Computer Networks and Communications,Information Systems

Reference150 articles.

1. X-SRAM: enabling in-memory Boolean computations in CMOS static random access memories;IEEE Transactions on Circuits and Systems I: Regular Papers,2018

2. Alex, K., Vinod, N. and Geoffrey, H. (2022), “CIFAR-10, dataset”, available at: www.cs.toronto.edu/∼kriz/cifar.html (accessed 21 September 2022).

3. A depthwise CNN in-memory accelerator,2018

4. Puma: a programmable ultra-efficient memristor-based accelerator for machine learning inference,2019

5. Author (2022a), “Graphcore, ipu”, available at: www.graphcore.ai/ (accessed 21 September 2022).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3