Block copolymers of pyrrole and ethoxylated nonylphenol

Author:

Köken N.,Çamoglu M.E.,Güvel E.A.

Abstract

Purpose This paper aims to synthesise block copolymers (PPy-b-ENP) of pyrrole (Py) and ethoxylated nonyl phenols (ENP) via redox systems in presence of ceric ammonium nitrate (CAN) at room temperature. The initiating radical was formed on reducing organic compound which in turn initiated polymerisation to give diblock copolymers containing chain ends of ENPs and polypyrrole (Ppy). The effects of the concentration of Ce+4 salt, ENPs and Py on both the yield and electrical conductivities of corresponding polymers were studied. Design/methodology/approach In total, 0.1 M stock solution of CAN:100 ml 1 M HNO3 was prepared freshly (7 ml HNO3 dissolved in 100 ml water) and used in 50 ml of 0.1 M CAN solution (2.7438 g CAN dissolved in 50 ml nitric acid solution). The reducing compound (Py) was dissolved in water. Py and ENP were added slowly to the flask with vigorous stirring. The content of the flask was flushed with oxygen-free nitrogen. The resulting copolymers were characterised with spectroscopic methods like Fourier transform infrared spectroscopy and scanning electron microscope. Findings In this study, DMSO-slightly soluble Py copolymers were produced with ENPs. The conductivities of copolymers were found to be in the range of 10-1 to 10-4 S/cm. Soluble and processable conductive polymers were developed. Research limitations/implications In this study, the water solubility of ENPs diminishes the conductivity of copolymer because of its surfactant structure. When the CAN/Py ratio was increased, PPys and copolymers with both higher yield and lower conductivity values were obtained. The results indicated that solubilities and the yield of the polymers synthesised in the presence of ENP have increased considerably. ENP caused degradative chain transfer reaction to become significant compared with bimolecular termination, so the yield decreased with increasing ENP concentration about 20 g/l. Results showed that yield of the copolymers strongly depends on Ce+4 concentrations while of copolymers were measured to be 10-3 S/cm. Practical implications PPy-b-ENP diblock copolymers were prepared with Ce+4 as an oxidation agent in a single step. Social implications These slightly soluble and conductive copolymers may overcome difficulties in the applications of PPy homopolymers and open new application areas. Originality/value PPy-b-ENPs of lightly soluble (in DMSO) and conductive (10-2 S/cm) copolymers have been synthesised in one step. The results indicate that the surface of the copolymer is composed of well-distributed nanospheres with an average particle diameter of 35-400 nm.

Publisher

Emerald

Subject

Materials Chemistry,Surfaces, Coatings and Films

Reference21 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3