Author:
Qi Zhichuang,Chen Jingshan,Huang Zhangmi,Hu Chunyan,Liu Baojiang
Abstract
Purpose
This paper aims to prepare Poly(Styrene-Butyl acrylate-Methacrylic acid) @Poly Gallic acid-Fe3+ photonic crystal composite inks [P(St-BA-MAA)@PGA-Fe3+ PCCI, @ means the PGA-Fe3+ is loaded on the microspheres] and construct noniridescent structural colors on fabric substrates, with the goal of improving the visibility of structural colors.
Design/methodology/approach
P(St-BA-MAA)@PGA-Fe3+ PCCI were prepared by coating P(St-BA-MAA) microspheres with a metal-polyphenol network formed by gallic acid (GA, C7H6O5) and Fe3+. The assembly effects of the inks were explored under different conditions, including pH, temperature, concentration and surface tension. The optimal self-assembly conditions of the inks were determined using the controlled variable method.
Findings
The results demonstrated the successful preparation of P(St-BA-MAA)@PGA-Fe3+ PCCI. The metal polyphenol network film composed of GA and Fe3+ was successfully coated on the surface of P(St-BA-MAA) seed microspheres. The assembly mechanism of the inks was investigated, indicating that at a diethylene glycol (DEG, C4H10O3) concentration of 0.3 wt% and pH of 7, bright noniridescent structural colors could be formed on fabric surfaces after self-assembly by PCCI at 60 °C for 10 min. Furthermore, the mechanical fastness of the structural colors was enhanced due to the adherence of the soft shell composed of P(St-BA-MAA) and GA.
Originality/value
Utilizing a cost-effective approach and a diverse array of readily available raw materials, we have successfully prepared P(St-BA-MAA)@PGA-Fe3+ PCCI, which boasts superior performance and offers fabrics a range of unique coloring styles. This innovation paves the way for potential applications of structural colors in practical production, thereby broadening their realm of utility.