Studying the properties of polypyrrole-montmorillonite polyacrylic-urethane nanocomposite coatings: the role of an eco-friendly ionic liquid

Author:

Amini Reza,Kardar Pooneh

Abstract

Purpose This paper aims to achieve an anti-corrosive coating via uniform dispersion of nanoclay particles (montmorillonite) and polypyrrole (PPy) as a conductive polymer as well as their effects on the anti-corrosion features in the presence of the eco-friendly ionic liquids (ILs). Design/methodology/approach In this research, PPy with different forms of nanoclay were used. Moreover, ILs additive is used to enhance the better dispersion process of clay and PPy nanoparticles in the resin. Findings As a result, the IL additive in the formulation of nano-composite coatings greatly improves the dispersion process of clay and PPy nanoparticles in the resin. Due to its high compatibility with polyurethane resin and clay and PPy nanoparticles, this additive contains a high dispersing power to disperse the investigated nanoparticles in the resin matrix. Research limitations/implications High polarity of ILs as well as abilities to dissolve both mineral and organic materials, they can provide the better chemical processes compared to common solvents. Practical implications IL abilities have not been discovered to a large extent such as catalysts and detectors. Social implications ILs have been emerging as promising green solvents to replace conventional solvents in recent years. They possess unique properties such as nonvolatility, low toxicity, ease of handling, nonflammability and high ionic conductivity. Thus, they have received much attention as green media for various chemistry processes. Originality/value The simultaneous existence of clay, PPy and IL additive in the nano-composite coating formulation is responsible for the high corrosion resistance of the coating.

Publisher

Emerald

Subject

Materials Chemistry,Surfaces, Coatings and Films

Reference18 articles.

1. Using mixture experimental design to study the effect of phosphating bath formulation on the properties of magnesium substrate;Pigment. Resin. Technol,2022

2. Ionic liquids for the electrosyntheses of conducting;Prog. Chemis,2009

3. Corrosion protection performance of Nanoclay-Polyester nanocomposite coatings;Pro. Color. Color. Coat,2016

4. Ionic liquids: properties, application, and synthesis;Fine. Chemic. Engin,2021

5. Ionic Liquid-Based polymer nanocomposites for sensors, energy, biomedicine, and environmental applications: roadmap to the future;Biomed,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3