Using genetic programming to model the bond strength of GFRP bars in concrete under the effects of design guidelines

Author:

Chuang Ying-Ji,Tsai Hsing-Chih

Abstract

Purpose This paper aims to use a derivative of genetic programming to predict the bond strength of glass fiber-reinforced polymer (GFRP) bars in concrete under the effects of design guidelines. In developing bond strength prediction models, this paper prioritized simplicity and meaningfulness over extreme accuracy. Design/methodology/approach Assessing the bond strength of GFRP bars in concrete is a critical issue in designing and building reinforced concrete structures. Findings Ultimately, the equation of a linear form of a particular design guideline was suggested as the optimal prediction model. Improvements to the current design guidelines suggested by this model include setting a 1.31 magnification and considering the effects of the three significant parameters of bar diameter (db), minimum cover-to-bar diameter (C/db) and development length to bar diameter (l/db) under an acceptable root mean square error accuracy of around 2 MPa. Furthermore, the model suggests that the original influence parameter of concrete compressive strength (fc) may be removed from bond strength calculations. Originality/value The model suggests that the original influence parameter of concrete compressive strength (fc) may be removed from bond strength calculations.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

Reference32 articles.

1. ACI Committee 440.1R-06 (2006), “Guide for the design and construction of structural concrete reinforced with FRP bars,” American Concrete Institute, Farmington Hills.

2. Numerical modeling of concrete strength under multiaxial confinement pressures using linear genetic programming;Automation in Construction,2013

3. Neural network modelling for shear strength of concrete members reinforced with FRP bars;Composites Part B: Engineering,2012

4. Prediction of compressive and tensile strength of limestone via genetic programming;Expert Systems with Applications,2008

5. Prediction and multi-objective optimization of high-strength concrete parameters via soft computing approaches;Expert Systems with Applications,2009

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3