Investigation of rotating stall characteristics in a centrifugal pump impeller at low flow rates

Author:

Zhou Peijian,Wang Fujun,Mou Jiegang

Abstract

Purpose Rotating stall is an unsteady flow phenomenon that causes instabilities and low efficiency in pumps. The purpose of this paper is to investigate the rotating stall characteristics and unsteady behavior of stall cells in a centrifugal pump impeller at low flow rates. Design/methodology/approach A developed large eddy simulation with dynamic mixed nonlinear model is performed to evaluate the unsteady flow in a centrifugal pump impeller. The rotating stall flow field through the centrifugal pump impeller is analyzed under three typical flow rates. Frequency spectrum analysis are carried out on the series of pressure fluctuation to get the rotating stall characteristics. The size and intensity of stall cells are also analyzed using time-averaged vorticity and static pressure. Findings The rotating stall cell first occurs in the suction side of the blade and exhibits an obvious life cycle including decay mergence, shedding, growing and development with a low frequency. With the decrease of flow rate, the amplitude of pressure fluctuations in the impeller tends to be larger, the propagated speed of stall cells and rotating stall frequency tends to be smaller, but the number of cells remains unchanged. The size of stall cells increases as the flow rate decreases, but intensity changes is very little. Originality/value The rotating stall characteristics in a centrifugal pump impeller under low flow rates are presented first using a developed large eddy simulation approach.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

Reference21 articles.

1. Experimental investigation of flow instabilities and rotating stall in a high energy centrifugal pump stage,2009

2. Flow in a centrifugal pump impeller at design and off-design conditions: Part II: large eddy simulations;Journal of Fluids Engineering,2003

3. Compressor surge and stall propagation;Transactions of the ASME,1955

4. Time-resolved Particle Image Velocimetry (PIV) measurements in a radial diffuser pump,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3