Abstract
PurposeIn this paper, based on the density functional theory (DFT) and finite element method (FEM), the elastic, buckling and vibrational behaviors of the monolayer bismuthene are studied.Design/methodology/approachThe computed elastic properties based on DFT are used to develop a finite element (FE) model for the monolayer bismuthene in which the Bi-Bi bonds are simulated by beam elements. Furthermore, mass elements are used to model the Bi atoms. The developed FE model is used to compute Young's modulus of monolayer bismuthene. The model is then used to evaluate the buckling force and fundamental natural frequency of the monolayer bismuthene with different geometrical parameters.FindingsComparing the results of the FEM and DFT, it is shown that the proposed model can predict Young's modulus of the monolayer bismuthene with an acceptable accuracy. It is also shown that the influence of the vertical side length on the fundamental natural frequency of the monolayer bismuthene is not significant. However, vibrational characteristics of the bismuthene are significantly affected by the horizontal side length.Originality/valueDFT and FEM are used to study the elastic, vibrational and buckling properties of the monolayer bismuthene. The developed model can be used to predict Young's modulus of the monolayer bismuthene accurately. Effect of the vertical side length on the fundamental natural frequency is negligible. However, vibrational characteristics are significantly affected by the horizontal side length.
Subject
Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献