Study on the integration effect of multiple vehicles’ delayed velocities on traffic stability in intelligent transportation system environment

Author:

Zhang Geng,Ma Qinglu,Pan Dongbo,Zhang Yu,Huang Qiaoli,Jiang Shan

Abstract

Purpose In an intelligent transportation system (for short, ITS) environment, a vehicle’s motion is affected by the information in a large scale. The purpose of this paper is to study the integration effect of multiple vehicles’ delayed velocities on traffic flow. Design/methodology/approach This paper constructed a new car-following model to study the integration effect of multiple vehicles’ delayed velocities on traffic flow. The new model is analyzed by linear and nonlinear perturbation method theoretically and also verified by simulation. Findings It is found out that the integration of preceding vehicles’ delayed velocities affect the stability of traffic flow importantly, and three preceding vehicles’ delayed velocities information should be considered in real traffic. Originality/value The new car-following model by considering the integration effect of multiple vehicles’ delayed velocities is firstly proposed in this paper. The research result shows that three preceding vehicles’ delayed velocities information is the best choice to stabilizing traffic flow.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. NSF: Neural Surface Fields for Human Modeling from Monocular Depth;2023 IEEE/CVF International Conference on Computer Vision (ICCV);2023-10-01

2. Modeling and stability analysis of car-following behavior for connected vehicles by considering driver characteristic;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering;2023-01-06

3. Density waves in an improved car-following model under intelligent transportation system environment;Modern Physics Letters B;2022-05-30

4. The Car-Following Model and Its Applications in the V2X Environment: A Historical Review;Future Internet;2021-12-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3