Abstract
PurposeA model for calculating the global overpressure time history of a single cloud detonation from overpressure time history of discrete positions in the range of single cloud detonation is to be proposed and verified. The overpressure distribution produced by multiple cloud detonation and the influence of cloud spacing and fuel mass of every cloud on the overpressure distribution are to be studied.Design/methodology/approachA calculation method is used to obtain the global overpressure field distribution after single cloud detonation from the overpressure time history of discrete distance to detonation center after single cloud detonation. On this basis, the overpressure distribution produced by multi-cloud under different cloud spacing and different fuel mass conditions is obtained.FindingsThe results show that for 150 kg fuel, when the spacing of three clouds is 40 m, 50 m, respectively, the overpressure range of larger than 0.1 MPa is 5496.48 mˆ2 and 6235.2 mˆ2, which is 2.89 times and 3.28 times of that of single cloud detonation. The superposition effect can be ignored when the spacing between the three clouds is greater than 60 m. In the case of fixed cloud spacing, once the overpressure forms continuous effective superposition, the marginal utility of fuel decreases.Originality/valueA model for calculating the global overpressure time history of a single cloud detonation from overpressure time history of discrete positions in the range of single cloud detonation is proposed and verified. Based on this method, the global overpressure field of single cloud detonation is reconstructed, and the superimposed overpressure distribution characteristics of three cloud detonation are calculated and analyzed.
Reference29 articles.
1. Studies on formation of unconfined detonable vapor cloud using explosive means;Journal of Hazardous Materials,2013
2. Flame propagation and dust transient movement in a dust cloud explosion process;Journal of Loss Prevention in the Process Industries,2017
3. Study status quo and development of aggregated effect of multiple earth penetrator bursts detonated simultaneously;Journal of Army Engineering University of PLA,2002
4. Experimental study on the process of fuel explosive dispersion;Chinese Journal of High Pressure Physics,2005