Abstract
PurposeTourism demand forecasting is vital for the airline industry and tourism sector. Combination forecasting has the advantage of fusing several forecasts to reduce the risk of inappropriate model selection for analyzing decisions. This paper investigated the effects of a time-varying weighting strategy on the performance of linear and nonlinear forecast combinations in the context of tourism.Design/methodology/approachThis study used grey prediction models, which did not require that the available data satisfy statistical assumptions, to generate forecasts. A quality-control technique was applied to determine when to change the combination weights to generate combined forecasts by using linear and nonlinear methods.FindingsThe empirical results showed that except for when the Choquet fuzzy integral was used, forecast combination with time-varying weights did not significantly outperform that with fixed weights. The Choquet integral with time-varying weights significantly outperformed that with fixed weights for all model combinations, and had a superior forecasting accuracy to those of other combination methods.Practical implicationsThe tourism sector can benefit from the use of the Choquet integral with time-varying weights, by using it to formulate suitable strategies for tourist destinations.Originality/valueCombining forecasts with time-varying weights may improve the accuracy of the predictions. This study investigated incorporating a time-varying weighting strategy into combination forecasting by using CUSUM. The results verified the effectiveness of the time-varying Choquet integral for tourism forecast combination.
Subject
Applied Mathematics,General Computer Science,Control and Systems Engineering
Reference81 articles.
1. Modeling and forecasting regional tourism demand using the Bayesian global vector autoregressive (BGVAR) model;Journal of Travel Research,2018
2. Bagging in tourism demand modeling and forecasting;Journal of Travel Research,2017
3. Modelling international tourism demand using seasonal ARIMA models;Journal of Hospitality and Tourism Management,2015
4. Tourism demand forecasting with time series imaging: a deep learning model;Annals of Tourism Research,2021
5. Collaborative forecasting of tourism demand for multiple tourist attractions with spatial dependence: a combined deep learning model;Tourism Economics,2023
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献