Deformation similarity clustering based collision detection in clothing simulation

Author:

Jiongzhou Liu,Jituo Li,Guodong Lu

Abstract

Purpose – The 3D dynamic clothing simulation is widely used in computer-added garment design. Collision detection and response are the essential component and also the efficiency bottleneck in the simulation. The purpose of this paper is to propose a high efficient collision detection algorithm for 3D clothing-human dynamic simulation to achieve both real-time and virtually real simulation effects. Design/methodology/approach – The authors approach utilizes the offline data learning results to simplify the online collision detection complexity. The approach includes two stages. In the off-line stage, model triangles with most similar deformations are first, partitioned into several near-rigid-clusters. Clusters from the clothing model and the human model are matched as pairs according to the fact that they hold the potential to intersect. For each cluster, a hierarchical bounding box tree is then constructed. In the on-line stage, collision detection is checked and treated parallelly inside each cluster pairs. A multiple task allocation strategy is proposed in parallel computation to ensure efficiency. Findings – Reasonably partitioning the 3D clothing and human model surfaces into several clusters and implementing collision detection on these cluster pairs can efficiently reduce the model primitive amounts that need be detected, consequently both improving the detection efficiency and remaining the simulation virtual effect. Originality/value – The current methods only utilize the dynamic clothing-human status; the authors algorithm furthermore combines the intrinsic correspondence relationship between clothing and human clusters to efficiently shrink the detection query scope to accelerate the detection speed. Moreover, partitioning the model into several independent clusters as detection units is much more profitable for parallel computation than current methods those treat the model entirety as the unit.

Publisher

Emerald

Subject

Polymers and Plastics,General Business, Management and Accounting,Materials Science (miscellaneous),Business, Management and Accounting (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3