Reliability characteristics of COVID-19 death rate using generalized progressive hybrid censored data

Author:

Irfan Mohd,Sharma Anup KumarORCID

Abstract

PurposeA progressive hybrid censoring scheme (PHCS) becomes impractical for ensuring dependable outcomes when there is a low likelihood of encountering a small number of failures prior to the predetermined terminal time T. The generalized progressive hybrid censoring scheme (GPHCS) efficiently addresses to overcome the limitation of the PHCS.Design/methodology/approachIn this article, estimation of model parameter, survival and hazard rate of the Unit-Lindley distribution (ULD), when sample comes from the GPHCS, have been taken into account. The maximum likelihood estimator has been derived using Newton–Raphson iterative procedures. Approximate confidence intervals of the model parameter and their arbitrary functions are established by the Fisher information matrix. Bayesian estimation procedures have been derived using Metropolis–Hastings algorithm under squared error loss function. Convergence of Markov chain Monte Carlo (MCMC) samples has been examined. Various optimality criteria have been considered. An extensive Monte Carlo simulation analysis has been shown to compare and validating of the proposed estimation techniques.FindingsThe Bayesian MCMC approach to estimate the model parameters and reliability characteristics of the generalized progressive hybrid censored data of ULD is recommended. The authors anticipate that health data analysts and reliability professionals will get benefit from the findings and approaches presented in this study.Originality/valueThe ULD has a broad range of practical utility, making it a problem to estimate the model parameters as well as reliability characteristics and the significance of the GPHCS also encourage the authors to consider the present estimation problem because it has not previously been discussed in the literature.

Publisher

Emerald

Subject

Strategy and Management,General Business, Management and Accounting

Reference54 articles.

1. Classical and Bayesian inference for the Kavya–Manoharan generalized exponential distribution under generalized progressively hybrid censored data;Symmetry,2023

2. Analysis of Muth parameters using generalized progressive hybrid censoring with application to sodium sulfur battery;Journal of Radiation Research and Applied Sciences,2023

3. Optimal analysis of adaptive type-II progressive censored for new unit-Lindley model;Journal of King Saud University-Science,2023

4. Approximate maximum likelihood estimation of the mean and standard deviation of the normal distribution based on type II censored samples;Journal of Statistical Computation and Simulation,1989

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3