Abstract
PurposeWhile steady-state analysis is useful, it does not consider the inherent transient characteristics of repairable systems' behavior, especially in systems that have relatively short life spans, or when their transient behavior is of special concern such as the motivating example used in this paper, military systems. Therefore, a maintenance policy that considers both transient and steady-state availability and aims to achieve the best trade-off between high steady-state availability and rapid stabilization is essential.Design/methodology/approachThis paper studies the transient behavior of system availability under the Kijima Type II virtual age model. While such systems achieve steady-state availability, and it has been proved that deploying preventive maintenance (PM) can significantly improve its steady-state availability, this improvement often comes at the price of longer and increased fluctuating transient behavior, which affects overall system performance. The authors present a methodology that identifies the optimal PM policy that achieves the best trade-off between high steady-state availability and rapid stabilization based on cost-availability analysis.FindingsWhen the proposed simulation-based optimization and cost analysis methodology is applied to the motivating example, it produces an optimal PM policy that achieves an availability–variability balance between transient and steady-state system behaviors. The optimal PM policy produces a notably lower availability coefficient of variation (by 11.5%), while at the same time suffering a negligible limiting availability loss of only 0.3%. The new optimal PM policy also provides cost savings of about 5% in total maintenance cost. The performed sensitivity analysis shows that the system's optimal maintenance cost is sensitive to the repair time, the shape parameter of the Weibull distribution and the downtime cost, but is robust with respect to changes in the remaining parameters.Originality/valueMost of the current maintenance models emphasize the steady-state behavior of availability and neglect its transient behavior. For some systems, using steady-state availability as the sole metric for performance is not adequate, especially in systems that have relatively short life spans or when their transient behavior affects the overall performance. However, little work has been done on the transient analysis of such systems. In this paper, the authors aim to fill this gap by emphasizing such systems and applications where transient behavior is of critical importance to efficiently optimize system performance. The authors use military systems as a motivating example.
Subject
Strategy and Management,General Business, Management and Accounting
Reference42 articles.
1. Author 1, “Availability and use of aircraft in the Air Force and Navy”, available at: https://www.cbo.gov/publication/57713
2. Author 2, “Enhanced aircraft Platform availability through advanced maintenance concepts and technologies”, available at: https://apps.dtic.mil/sti/pdfs/ADA545816.pdf
3. A review on condition-based maintenance optimization models for stochastically deteriorating system;Reliability Engineering and System Safety,2017
4. A model of system limiting availability under imperfect maintenance;Journal of Quality in Maintenance Engineering,2017
5. Modelling and optimizing sequential imperfect preventive maintenance;Reliability Engineering and System Safety,2009